Management information systems for microfinance institutions: the U-shaped features-scale curve

Vitalie BUMACOV
Burgundy School of Business

Paris, ITEM4
April 12, 2013
• Exists a U-shaped Functionality-Scale curve specific to management information systems for microfinance institutions;

• The left side of the curve is sloping downwards MFI switch from manual MIS to semi-computerized (spreadsheets), then to low-end DB engines or self-developed software.

• Left side effect – tradeoff between Functionalities and Scale.

• Breaking point – acquisition of appropriate MIS MIS prevents 40% of MFI to achieve fixed goals, of these 60% are small.

• Right side effect - Scale and Functionalities are positively correlated.

• Question: Why the initial tradeoff? Is it bad? Has to be avoided? Solutions?
The Curve

Phases in practice:
1. Tradeoff;
2. Breaking point;
3. (Exponential) growth.

Phases in theory:
1. (Constant) growth.
The Paper

<table>
<thead>
<tr>
<th>Client</th>
<th>MFI</th>
<th>Stakeholders</th>
</tr>
</thead>
</table>

The diagram shows a flow from Client to MFI to Stakeholders.
The tradeoff stage (1)

- **Stage 1 (manual)**
 - Almost unlimited number of data manipulations at lowest cost
 - Reporting the number of female borrowers is immediate
 - Changing a procedure or collecting new type of data is immediate.

- **The extra 2 steps (+ investments):**
 0. Investment in IT infrastructure (Hardware + Software);
 1. Conversion of information from paper to computerized data;
 - Data loss due to unsupported functionalities (photos, descriptions);
 + Computer assisted data treatment and generation of reports;
 2. Printing data / information on paper for reporting purposes.

- **Stage 2 (semi-manual):**
 - Built-in functionalities, possibility to use formulas and macros;
 - Facilitates scaling but imply a certain loss in functionalities;
 - New ratios - automatic calculation requires intervention of authorized specialized personnel that will update formulas or macros;
 - Limited to 5,000 loans per sheet (problem with 1 – many relationships).
The tradeoff stage (2)

- Stage 2 (semi-manual).

- The extra steps (+ investments):
 - Network;
 - Server;
 - DB software..

- Stage 3 (semi-automated):
 - Use of low-end database engines;
 - Centralized database / standardized forms;
 - No problem with one-to-many data relationships;
 - Interface required to work with data: queries and forms;
 - Access to raw data is impossible;
 - Even the procedure of counting current loans requires (hard) coding.

- Tradeoff: functionalities for possibility to continue (one-dimensional) scaling.
The breaking point (3)

- MIS based on low-end database engines + own development prevents the MFI from scaling at a faster pace.

- 40% of MFIs have their MIS preventing them from achieving MFI’s goals. Of these, 60% are institutions with less than 10,000 clients (CGAP, 2008)

- Breaking point intervenes when the MFI decides to acquire the appropriate off-the-shelf MIS.
The positive correlation stage

\(R^2 = 0.2627 \)
The positive stage & costs

\[R^2 = 0.24 \]
The quality of the MIS

- The ISO Systems and software Quality Requirements and Evaluation (SQuaRE) identifies eight components of quality of MIS:
 1. functional suitability,
 2. reliability,
 3. operability,
 4. performance efficiency,
 5. security,
 6. compatibility,
 7. maintainability and
 8. transferability.
The quality data

- Functional suitability – the functionalities
- Reliability – proxy: the median level of the scale of clients \((\text{Max} - \text{Min})/2\)
- Operability – proxy: CGAP evaluation of “Ease of Use” of the MIS using a
 4-points scale (1 - poor, 2 – fair, 3 – good, 4 – excellent)
- Performance efficiency – excluded as compensatory
- Security – sum of S features (data encryption, back-up, tracking)
- Compatibility – data export / import tools + accounting integration
- Maintainability – modification (parameterization), D audit and repair tools
- Transferability – transfer from one operational environment to another: a score composed of: Server OS + Workstation OS + DB requirements +
Linear regression

R² = .76

<table>
<thead>
<tr>
<th></th>
<th>Transferability</th>
<th>Maintainability</th>
<th>Compatibility</th>
<th>Security</th>
<th>Operability</th>
<th>Reliability</th>
<th>Functionality</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>(0.07)</td>
<td>0.02</td>
<td>(0.17)</td>
<td>(0.06)</td>
<td>0.28</td>
<td>0.05</td>
<td>0.12</td>
<td>(2.26)</td>
</tr>
<tr>
<td>Standard Error</td>
<td>0.03</td>
<td>0.03</td>
<td>0.06</td>
<td>0.04</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
<td>0.62</td>
</tr>
</tbody>
</table>

R² = .78

<table>
<thead>
<tr>
<th></th>
<th>MFI Clients</th>
<th>Transferability</th>
<th>Maintainability</th>
<th>Compatibility</th>
<th>Security</th>
<th>Operability</th>
<th>Reliability</th>
<th>Functionality</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>(0.00)</td>
<td>(0.06)</td>
<td>0.02</td>
<td>(0.13)</td>
<td>(0.05)</td>
<td>0.27</td>
<td>0.04</td>
<td>0.12</td>
<td>(2.20)</td>
</tr>
<tr>
<td>Standard Error</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.07</td>
<td>0.04</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
<td>0.615</td>
</tr>
</tbody>
</table>
Thanks for your attention and comments!

vitalie.bumacov [“({ @ })“] escdijon.eu