

Chaire Banque Populaire en microfinance

Management information systems for microfinance institutions: the U-shaped features-scale curve

Vitalie BUMACOV Burgundy School of Business

Paris, ITEM4 April 12, 2013

Intro

- Exists a U-shaped Functionality-Scale curve specific to management information systems for microfinance institutions;
- The left side of the curve is sloping downwards MFIs switch form manual MIS to semi-computerized (spreadsheets), then to low-end DB engines or self-developed software.
- Left side effect tradeoff between Functionalities and Scale.
- Breaking point acquisition of appropriate MIS
 MIS prevents 40% of MFIs to achieve fixed goals, of these 60% are small.
- Right side effect Scale and Functionalities are positively correlated.
- Question: Why the initial tradeoff? Is it bad? Has to be avoided? Solutions?

Phases in practice:

- 1. Tradeoff;
- 2. Breaking point;
- 3. (Exponential) growth.

Phases in theory:1. (Constant) growth.

BURGUNDY SCHOOL OF BUSINESS

Client

The Paper

Stakeholders

THUR SECTRON

MFI

The tradeoff stage (1)

- Stage 1 (manual)
 - Almost unlimited number of data manipulations al lowest cost reporting the number of female borrowers is immediate
 - Changing a procedure or collecting new type of data is immediate.
- The extra 2 steps (+ investments):
 - 0. Investment in IT infrastructure (Hardware + Software);
 - 1. Conversion of information from paper to computerized data;
 - Data loss due to unsupported functionalities (photos, descriptions);
 - + Computer assisted data treatment and generation of reports;
 - 2. Printing data / information on paper for reporting purposes.
- Stage 2 (semi-manual):
 - Built-in functionalities, possibility to use formulas and macros;
 - Facilitates scaling but imply a certain loss in functionalities;
 - New ratios automatic calculation requires intervention of authorized specialized personnel that will update formulas or macros;
 - Limited to 5.000 loans per sheet (problem with 1 many relationships).

The tradeoff stage (2)

- Stage 2 (semi-manual).
- The extra steps (+ investments):
 - Network;
 - Server;
 - DB software ..
- Stage 3 (semi-automated):
 - Use of low-end database engines;
 - Centralized database / standardized forms;
 - No problem with one-to-many data relationships;
 - Interface required to work with data: queries and forms;
 - Access to raw data is impossible;
 - Even the procedure of counting current loans requires (hard) codding.
- Tradeoff: functionalities for possibility to continue (one-dimensional) scaling.

The breaking point (3)

- MIS based on low-end database engines + own development prevents the MFI from scaling at a faster pace.
- 40% of MFIs have their MIS preventing them from achieving MFI's goals. Of these, 60% are institutions with less than 10,000 clients (CGAP, 2008)
- Breaking point intervenes when the MFI decides to acquires the appropriate off-the-shelf MIS.

The positive correlation stage

BURGUNDY SCHOOL OF BUSINESS

41

1

-

Jol 1

The positive stage & costs

BURGUNDY SCHOOL OF BUSINESS

The quality of the MIS

- ISO framework (ISO/IEC 25010:2011).
- The ISO Systems and software Quality Requirements and Evaluation (SQuaRE) identifies eight components of quality of MIS:
 - 1. functional suitability,
 - 2. reliability,
 - 3. operability,
 - 4. performance efficiency,
 - 5. security,
 - 6. compatibility,
 - 7. maintainability and
 - 8. transferability.

- Functional suitability the functionalities
- Reliability proxy: the median level of the scale of clients (Max Min)/2
- Operability proxy: CGAP evaluation of "Ease of Use" of the MIS using a 4-points scale (1 - poor, 2 – fair, 3 – good, 4 – excellent)
- Performance efficiency excluded as compensatory
- Security sum of S features (data encryption, back-up, tracking)
- Compatibility data export / import tools + accounting integration
- Maintainability modification (parameterization), D audit and repair tools
- Transferability transfer from one operational environment to another: a score composed of: Server OS + Workstation OS + DB requirements +

 $R^2 = .76$

Transfer	Maintai	Compat	Socurity	Operabi	Reliabili	Function	P
ability	ability nability	ibility	lity	ty	ality	D	
(0.07)	0.02	(0.17)	(0.06)	0.28	0.05	0.12	(2.26)
0.03	0.03	0.06	0.04	0.10	0.04	0.02	0.62

 $R^2 = .78$

MFI	Transfe	Maintai	Compat	Securit	Operab	i Reliabili	Functio	D
Clients	rability	nability	ibility	У	lity	ty	nality	D
(0.00)	(0.06)	0.02	(0.13)	(0.05)	0.27	0.04	0.12	(2.20)
0.00	0.03	0.03	0.07	0.04	0.10	0.04	0.02	0.615

Conclusions

Thanks for your attention and comments! vitalie.bumacov ["({ @ })"] escdijon.eu